
Speci�cation Problem

Manfred Broy

Leslie Lamport

Sat 6 Aug 1994

1 The Procedure Interface

The problem calls for the speci�cation and veri�cation of a series of com-

ponents. Components interact with one another using a procedure-calling

interface. One component issues a call to another, and the second compo-

nent responds by issuing a return. A call is an indivisible (atomic) action

that communicates a procedure name and a list of arguments to the called

component. A return is an atomic action issued in response to a call. There

are two kinds of returns, normal and exceptional. A normal call returns a

value (which could be a list). An exceptional return also returns a value,

usually indicating some error condition. An exceptional return of a value e

is called raising exception e. A return is issued only in response to a call.

There may be \syntactic" restrictions on the types of arguments and return

values.

A component may contain multiple processes that can concurrently issue

procedure calls. More precisely, after one process issues a call, other pro-

cesses can issue calls to the same component before the component issues

a return from the �rst call. A return action communicates to the calling

component the identity of the process that issued the corresponding call.

2 A Memory Component

The component to be speci�ed is a memory that maintains the contents of

a set MemLocs of locations. The contents of a location is an element of

a set MemVals. This component has two procedures, described informally

below. Note that being an element of MemLocs or MemVals is a \semantic"

1



restriction, and cannot be imposed solely by syntactic restrictions on the

types of arguments.

Name Read

Arguments loc : an element of MemLocs

Return Value an element of MemVals

Exceptions BadArg : argument loc is not an element of MemLocs.

MemFailure : the memory cannot be read.

Description Returns the value stored in address loc.

Name Write

Arguments loc : an element of MemLocs

val : an element of MemVals

Return Value some �xed value

Exceptions BadArg : argument loc is not an element of MemLocs, or

argument val is not an element of MemVals.

MemFailure : the write might not have succeeded.

Description Stores the value val in address loc.

The memory must eventually issue a return for every Read and Write call.

De�ne an operation to consist of a procedure call and the corresponding

return. The operation is said to be successful i� it has a normal (nonexcep-

tional) return. The memory behaves as if it maintains an array of atomically

read and written locations that initially all contain the value InitVal, such

that:

� An operation that raises a BadArg exception has no e�ect on the mem-

ory.

� Each successful Read(l) operation performs a single atomic read to

location l at some time between the call and return.

� Each successful Write(l; v) operation performs a sequence of one or

more atomic writes of value v to location l at some time between the

call and return.

� Each unsuccessful Write(l; v) operation performs a sequence of zero or

more atomic writes of value v to location l at some time between the

call and return.

A variant of the Memory Component is the Reliable Memory Component,

in which no MemFailure exceptions can be raised.

2



Problem 1 (a) Write a formal speci�cation of the Memory component and

of the Reliable Memory component.

(b) Either prove that a Reliable Memory component is a correct imple-

mentation of a Memory component, or explain why it should not be.

(c) If your speci�cation of the Memory component allows an implemen-

tation that does nothing but raise MemFailure exceptions, explain why this

is reasonable.

3 Implementing the Memory

3.1 The RPC Component

The RPC component interfaces with two environment components, a sender

and a receiver. It relays procedure calls from the sender to the receiver, and

relays the return values back to the sender. Parameters of the component are

a set Procs of procedure names and a mapping ArgNum, where ArgNum(p) is

the number of arguments of each procedure p. The RPC component contains

a single procedure:

Name RemoteCall

Arguments proc : name of a procedure

args : list of arguments

Return Value any value that can be returned by a call to proc

Exceptions RPCFailure : the call failed

BadCall : proc is not a valid name or args is not a

syntactically correct list of arguments for proc.

Raises any exception raised by a call to proc

Description Calls procedure proc with arguments args

A call of RemoteCall(proc; args) causes the RPC component to do one of the

following:

� Raise a BadCall exception if args is not a list of ArgNum(proc) argu-

ments.

� Issue one call to procedure proc with arguments args, wait for the

corresponding return (which the RPC component assumes will occur)

and either (a) return the value (normal or exceptional) returned by

that call, or (b) raise the RPCFailure exception.

� Issue no procedure call, and raise the RPCFailure exception.

3



The component accepts concurrent calls of RemoteCall from the sender, and

can have multiple outstanding calls to the receiver.

Problem 2 Write a formal speci�cation of the RPC component.

3.2 The Implementation

A Memory component is implemented by combining an RPC component

with a Reliable Memory component as follows. A Read or Write call is

forwarded to the Reliable Memory by issuing the appropriate call to the RPC

component. If this call returns without raising an RPCFailure exception, the

value returned is returned to the caller. (An exceptional return causes an

exception to be raised.) If the call raises an RPCFailure exception, then the

implementation may either reissue the call to the RPC component or raise a

MemFailure exception. The RPC call can be retried arbitrarily many times

because of RPCFailure exceptions, but a return from the Read or Write call

must eventually be issued.

Problem 3 Write a formal speci�cation of the implementation, and prove

that it correctly implements the speci�cation of the Memory component of

Problem 1.

4 Implementing the RPC Component

4.1 A Lossy RPC

The Lossy RPC component is the same as the RPC component except for

the following di�erences, where � is a parameter.

� The RPCFailure exception is never raised. Instead of raising this ex-

ception, the RemoteCall procedure never returns.

� If a call to RemoteCall raises a BadCall exception, then that exception

will be raised within � seconds of the call.

� If a RemoteCall(p; a) call results in a call of procedure p, then that call

of p will occur within � seconds of the call of RemoteCall.

� If a RemoteCall(p; a) call returns other than by raising a BadCall ex-

ception, then that return will occur within � seconds of the return

from the call to procedure p.

Problem 4 Write a formal speci�cation of the Lossy RPC component.

4



4.2 The RPC Implementation

The RPC component is implemented with a Lossy RPC component by pass-

ing the RemoteCall call through to the Lossy RPC, passing the return back

to the caller, and raising an exception if the corresponding return has not

been issued after 2� + � seconds.

Problem 5 (a) Write a formal speci�cation of this implementation.

(b) Prove that, if every call to a procedure in Procs returns within � sec-

onds, then the implementation satis�es the speci�cation of the RPC com-

ponent in Problem 2.

5


