
Mechanical Verification
of Concurrent Systems with TLA

Urban Engberg
Aarhus University

Peter Grønning
Technical University of Denmark

Leslie Lamport
Digital Equipment Corporation

Systems Research Center

14 September 1992 – version 2

THIS PAGE SHOULD NOT APPEAR
IN THE CAV PROCEEDINGS.

All but this page to appear in Proceedings of the Fourth International Workshop
on Computer-Aided Verification

Mechanical Verification of Concurrent Systems
with TLA

Urban Engberg1, Peter Grønning2, and Leslie Lamport3

1 Aarhus University
2 Technical University of Denmark
3 Digital Equipment Corporation

Systems Research Center

Abstract. We describe an initial version of a system for mechanically
checking the correctness proof of a concurrent system. Input to the sys-
tem consists of the correctness properties, expressed in TLA (the tem-
poral logic of actions), and their proofs, written in a humanly readable,
hierarchically structured form. The system uses a mechanical verifier to
check each step of the proof, translating the step’s assertion into a theo-
rem in the verifier’s logic and its proof into instructions for the verifier.
Checking is now done by LP (the Larch Prover), using two different
translations—one for action reasoning and one for temporal reasoning.
The use of additional mechanical verifiers is planned. Our immediate
goal is a practical system for mechanically checking proofs of behavioral
properties of a concurrent system; we assume ordinary properties of the
data structures used by the system.

1 Introduction

TLA, the Temporal Logic of Actions, is a logic for specifying and reasoning
about concurrent systems. Systems and their properties are described by logical
formulas; the TLA formula Π ⇒ Φ asserts that the system represented by Π
satisfies the property, or implements the system, represented by Φ. TLA is a
linear-time temporal logic [4] that can express liveness (eventuality) as well as
safety (invariance) properties. Although TLA is a formal logic, the TLA spec-
ification of a concurrent system is no more difficult to write than the system’s
description in a conventional programming language.
Since TLA is a formal logic, it allows completely rigorous reasoning. It is

clear that TLA proofs can, in principle, be checked mechanically. In 1991, we
began a one-year effort to determine if mechanical verification with TLA is prac-
tical. We decided to use the LP verification system [1, 2], initially planning to
write proofs directly in LP. However, we found the LP encoding to be distract-
ing, making large proofs difficult. We therefore decided to write a TLA to LP
translator, so specifications, theorems, and proof steps could be written in TLA.
Writing specifications and theorems directly in TLA avoids the errors that can
be introduced when hand translating what one wants to prove into the language
of a verifier. The translator also allows mechanically checked proofs to have the
same structure as hand proofs, making them easier to write and understand.

2

Working on the translator has thus far allowed us time to verify only a
few simple examples, including an algorithm to compute a spanning tree on an
arbitrary graph. Experience with more realistic examples is needed to determine
if mechanical verification of TLA formulas can be a practical tool for concurrent-
system design. It will never be easy to write rigorous proofs. However, we find
it very encouraging that mechanically checkable proofs written in the translator
seem to be only two to three times longer than careful hand proofs.
TLA, its LP encoding, and the translator are described in the following

three sections, using the spanning-tree algorithm as an example. In this example,
we prove that a system satisfies a property. An important feature of TLA is
the ability to prove that one system implements (is a refinement of) another.
However, space does not permit an example of such a proof.

2 TLA

For the purposes of this paper, we can consider TLA to be ordinary predicate
logic, except with two classes of variables called rigid variables and flexible vari-
ables, extended with the two operators ′ (prime) and ✷. Quantification is over
rigid variables only. (Full TLA also includes quantification over flexible variables,
which serves as a hiding operator.) We often refer to flexible variables simply as
variables.
The semantics of TLA is based on the concept of a state, which is an as-

signment of values to (flexible) variables. The meaning of a TLA formula is a
set of behaviors, where a behavior is a sequence of states. The operator ✷ is
the standard temporal-logic “always” operator [7]; the prime is a “next-state”
operator. The complete semantics of TLA can be found elsewhere [6]; here we
explain TLA informally through simple examples.
As a first example, we write a TLA formula specifying a program that starts

with the variable x equal to any natural number, and keeps incrementing x by
1 forever. Letting Nat denote the set of natural numbers, the obvious way to
express this with the prime and ✷ operators is

(x ∈ Nat) ∧ ✷(x′ = x+ 1) (1)

The predicate x ∈ Nat asserts that the value of x in the initial state is an
element of Nat ; the action x′ = x + 1 asserts that the value of x in the next
state is always 1 greater than its value in the current state, and the temporal
formula ✷(x′ = x+1) asserts that this is true for all steps—that is, for all pairs
of successive states.
Formula (1) asserts that the value of x is incremented in each step of a

behavior. For reasons explained in [5], we want also to allow steps that leave
x unchanged. Letting [A]f denote A ∨ (f ′ = f), this is expressed by the TLA
formula

(x ∈ Nat) ∧ ✷[x′ = x+ 1]x ∧ WFx(x′ = x+ 1) (2)

The conjunct ✷[x′ = x + 1]x asserts that every step of the program either
increments x by 1 or leaves it unchanged. It allows behaviors in which x remains

3

unchanged forever. The conjunct WFx(x′ = x+1) expresses the liveness property
that infinitely many x′ = x+1 steps (ones that do increment x) occur. The reader
is referred to [6] for an explanation of the WF operator and its definition in terms
of ′ and ✷.
In general, the canonical form of a TLA formula describing an algorithm is

Init ∧ ✷[N]v ∧ F (3)

where Init is a predicate describing the initial state, N is an action describing
how the variables may change, v is the tuple of all program variables, and F is
a liveness condition. The conjunct ✷[N]v asserts that every step is either an N
step or else leaves all variables unchanged (since a tuple is unchanged iff every
component is unchanged).
Our major example is a simple algorithm that, given a finite connected graph

and a root, constructs a spanning tree. For each node n, the algorithm computes
the distance d[n] from n to the root and, if n is not the root, its father f [n] in
the spanning tree.
When the algorithm is expressed formally, d and f are variables whose val-

ues are functions with domain equal to the set of nodes. Before describing the
algorithm, we introduce some notation for expressing functions. The expression
λx ∈ S : e(x) denotes a function f whose domain is S, such that f [x] equals
e(x) for all x in S. If f is a function, then f [s := v] is the function that is the
same as f except with f [s] = v. This is defined formally as follows, where dom f

denotes the domain of f , and ∆= means equals by definition.

f [s := v] ∆= λx ∈ dom f : if x = s then v else f [x]

(Thus, s /∈ dom f implies f [s := v] = f .) If f is a function and T a set, then
f [s :∈ T] is the set of all functions f [s := v] with v ∈ T . Finally, [S → T]
denotes the set of all functions f with domain S such that f [x] ∈ T for all
x ∈ S.
We now describe the spanning-tree algorithm. Initially, d[n] equals 0 for the

root and equals ∞ for all other nodes. For each node n, there is a process that
repeatedly executes improvement steps that choose a neighbor m with d[m] +
1 < d[n], decrease d[n], and set f [n] to m. The improvement step could simply
decrease d[n] to d[m]+1, but for reasons that are irrelevant to this discussion, we
consider a more general algorithm in which d[n] is set to a nondeterministically
chosen number between its old value and d[m]. The algorithm terminates when
no more improvement steps are possible.
The TLA formula Π describing this algorithm is defined in Figure 1, where

Node is the set of nodes, Root is the root, Nbrs(n) is the set of neighbors of node
n in the graph, and [a, b) is the set of natural numbers c such that a ≤ c < b.
We adopt the convention that a list bulleted with ∧’s denotes the conjunction of
the items, and we use indentation to eliminate parentheses. We have found this
convention extremely helpful in making large formulas easier to read.

4

The initial condition is described by the predicate Init . It asserts that d[n]
has the appropriate value (0 or ∞) and that f [n] is a node, for each n ∈ Node.
Action N2(n, m) describes an improvement step, in which d[n] is decreased

and f [n] set equal to m. However, it does not assert that m is a neighbor of
n. The action is enabled only if d[m] + 1 < d[n]. (In this formula, d and f are
flexible variables, while m and n are rigid variables.)
Action N is the disjunction of the actions N2(n, m) for every node n and

neighbor m of n. It is the next-state relation of the algorithm, describing how
the variables d and f may change. We define v to be the pair (d, f) of variables,
and Π to be the canonical formula describing the algorithm. The weak fairness
condition WFv(N) asserts that N steps are eventually taken as long as they
remain possible—that is, as long as the action N remains enabled. Concurrency
is represented by the nondeterministic interleaving of the different processes’
(atomic) improvement steps.

Init
∆
= ∧ d = λn ∈ Node : if n = Root then 0 else ∞

∧ f ∈ [Node → Node]

N2(n, m)
∆
= ∧ d[m] �= ∞

∧ d′ ∈ d[n :∈ [d[m] + 1, d[n])]
∧ f ′ = f [n := m]

N ∆
= ∃n ∈ Node : ∃m ∈ Nbrs(n) : N2(n, m)

v
∆
= (d, f)

Π
∆
= Init ∧ ✷[N]v ∧ WFv(N)

Fig. 1. The spanning-tree algorithm.

The correctness property to be proved is that, for every node n, the values of
d[n] and f [n] eventually become and remain correct. Letting Dist(n, m) denote
the distance in the graph between nodes n andm, the correctness of these values
is expressed by the predicate Done, defined to equal

∀n ∈ Node : ∧ d[n] = Dist(Root , n)
∧ 0 < d[n] < ∞ ⇒ ∧ f [n] ∈ Nbrs(n)

∧ Dist(Root , f [n]) = Dist(Root , n)− 1

(If the graph is not connected, then for every node n not in the root’s connected
component, Done asserts only that d[n] =∞.) The assertion that Done eventu-
ally becomes and remains true is expressed by the TLA formula ✸✷Done, where
✸F , read eventually F , is defined to equal ¬✷¬F . Correctness of the algorithm
is expressed by the formula Π ⇒ ✸✷Done, which asserts that ✸✷Done holds
for every behavior satisfying Π .

5

The usual first step in reasoning about a concurrent algorithm is to prove
an invariant. The appropriate invariant Inv for our algorithm is the following,
where \ denotes set difference.

∧ d ∈ [Node → Nat ∪ {∞}]
∧ f ∈ [Node → Node]
∧ d[Root] = 0
∧ ∀n ∈ Node \ {Root} : d[n] < ∞ ⇒ ∧ Dist(Root , n) ≤ d[n]

∧ f [n] ∈ Nbrs(n)
∧ d[f [n]] < d[n]

The invariance of Inv is asserted by the formula Π ⇒ ✷Inv . For brevity, we
prove the invariance only of the first two conjuncts of Inv , which we call TC . A
careful hand proof of the TLA formula Π ⇒ ✷TC expressing the invariance of
TC appears in Figure 2 and is discussed below. A similar proof for the complete
invariant Inv takes about two pages, but has the same basic structure.
The proof in Figure 2 uses a structured format that we find quite helpful for

managing the complexity of proofs. Step 1 proves that TC holds in the initial
state. Step 2 proves that any single step starting in a state with TC true leaves it
true. Step 3 applies the following standard TLA proof rule [6], where I ′ denotes
the formula obtained from I by replacing x with x′, for each flexible variable x.

INV1 : I ∧ [N]v ⇒ I ′

I ∧ ✷[N]v ⇒ ✷I

The theorem follows trivially from steps 1 and 3. Step 2, the “induction step”,
is the major part of an invariance proof. For this simple invariant, its proof is
easy.
The proof that Π ⇒ ✷Inv is like the invariance proof for TC , except step 2

is more difficult. The proof of the correctness property Π ⇒ ✸✷Done then uses
ordinary temporal-logic reasoning and the TLA proof rule WF1 [6]; space does
not permit its description.

3 Encoding TLA in LP

LP is based on a fragment of multisorted first-order logic. To reason about TLA
with LP, one must encode TLA formulas in LP’s logic. Our initial plan was
to have a single encoding. However, as Figure 2 shows, two different kinds of
reasoning are used in TLA proofs: steps 1 and 2 illustrate action reasoning, not
involving temporal operators; step 3 illustrates temporal reasoning. Since it is
formally a special case, action reasoning is possible in any encoding that allows
temporal reasoning. However, such reasoning can be made easier with a special
encoding for formulas not containing the temporal operator ✷. Action reasoning
is almost always the longest and most difficult part of a proof, so we decided to
use separate encodings for the action and temporal reasoning. We have found

6

Theorem Π ⇒ ✷TC

1. Init ⇒ TC
Proof We assume Init and prove TC .
1.1. d ∈ [Node → Nat ∪ {∞}]

Proof By definition of Init , considering separately the cases n = Root
and n �= Root .

1.2. f ∈ [Node → Node]
Proof By definition of Init .

qed Step 1 follows from 1.1, 1.2, and the definition of TC .

2. TC ∧ [N]v ⇒ TC ′

Proof We assume TC and [N]v and prove TC ′.
2.1. N ⇒ TC ′

Proof Since N = ∃n ∈ Node , m ∈ Nbrs(n) : N2(n, m), it suffices to
assume n ∈ Node , m ∈ Nbrs(n), and N2(n, m), and to prove TC ′.
2.1.1. d′ ∈ [Node → Nat ∪ {∞}]

Proof By definition of TC and N2, since [d[m] + 1, d[n]) ⊆ Nat ∪
{∞}.

2.1.2. f ′ ∈ [Node → Node]
Proof By definition of TC and N2, since Nbrs(n) ⊆ Node, for all
nodes n.

qed Step 2.1 follows from 2.1.1, 2.1.2, and the definition of TC .
2.2. (v′ = v) ⇒ TC ′

Proof Follows trivially from the definitions.
qed Step 2 follows from 2.1 and 2.2, since [N]v = N ∨ (v′ = v).

3. TC ∧ ✷[N]v ⇒ ✷TC
Proof By step 2 and rule INV1.

qed The theorem follows from 1, 3, and the definition of Π .

Fig. 2. The proof of invariance of TC .

the resulting simplification of action reasoning to be worth the inconvenience of
having two different encodings.
The encoding of action reasoning in LP is straightforward. TLA’s rigid vari-

ables become LP variables. For each TLA flexible variable x, we encode x and
x′ as two distinct LP constants. Thus, the TLA action (x′ = x+1)∧ (y′ = y) is
encoded in LP as (x’=x+1)&(y’=y).
The encoding of temporal reasoning is more subtle. In TLA, a formula is

an assertion that is true or false for a behavior. Let σ |= F denote that the
behavior σ satisfies the TLA formula F . Formula F is valid iff σ |= F is true for
all behaviors σ. The validity of F is represented in LP’s logic by ∀σ : σ |= F .
Neglecting details of the precise ASCII syntax, this formula is written in LP
as σ |= F , universal quantification over the free variable σ being implicit. The
semantic operator |=, which cannot appear in a TLA formula, becomes part of
the formula’s LP translation.
TLA’s (temporal) proof rules have straightforward translations into LP. For

7

example, the proof rule INV1 asserts

∀σ : σ |= (I ∧ [N]f ⇒ I ′)
∀σ : σ |= (I ∧ ✷[N]f ⇒ ✷I)

In this rule, ∧, ⇒, and ′ are operators declared in LP to represent the corre-
sponding TLA operators. In particular, ∧ and⇒ are different from LP’s built-in
conjunction (&) and implication (=>) operators. Propositional reasoning about
temporal formulas is done in LP using such axioms as

σ |= (F ∧ G) = (σ |= F) & (σ |= G)

4 The Translator

The TLA translator is a program written in Standard ML [3] that translates
“humanly readable” TLA specifications and proofs into LP proof scripts. Their
readability makes proofs easier to maintain when the specifications change than
they would be if written directly in LP. The different encodings for action rea-
soning and temporal reasoning are translated into two separate LP input files.
Formulas proved in the action encoding are asserted in the temporal encoding.
The proof succeeds if LP successfully processes both files.

4.1 Specifications

Figure 3 is the input to the TLA translator corresponding to the spanning-tree
algorithm of Figure 1. (All translator input is shown exactly as typed by the
user, except that multiple fonts have been used for clarity.) It begins with a
declaration of Span as the name of the specification, followed by a directive to
read the file frame, which contains declarations of all constants such as 0, +,
Nbrs , and Node. The next two lines declare d and f to be (flexible) variables.
(In TLA’s typeless logic, the only sorts are Boolean and Any.) The rest of the
specification is a direct transliteration of Figure 3, except for two differences: the
action N 1(n) is defined for use in the proofs, and * is used instead of comma to
denote ordered pairs. The translation of these definitions into LP rewrite rules
is straightforward, except for quantified expressions and the lambda-construct.
LP does not now support full first-order quantification, so we have defined LP
operators and associated proof rules for quantification and lambda abstraction.
Each occurrence of a quantifier or “lambda” requires the definition of an auxiliary
function, which is named for reference in proofs by a term in brackets [* . . . *].
In TLA, prime (′) is an operator that can be applied to predicates like Init

and to state functions like v , where priming an expression replaces all variables by
their primed versions. In the LP action encoding, primed and unprimed variables
become distinct constants, so the prime operator cannot be expressed. The “bar
operator” used in refinement [6, Section 9.3.2] and TLA’s Enabled operator [6,
Section 3.7] are similarly inexpressible. The translator must therefore add to
the LP encoding rewrite rules explicitly defining such expressions as Init ′, v ,

8

Name Span

Use frame

Variables
d , f : Any

Predicates
Init == /\ d = Lambda n in Node :

If n = Root Then 0 Else infty [* dist : Any *]

/\ f in [Node -> Node]

Actions
N 2(n, m) == /\ d[m] ~= infty

/\ d ′ in d[n :in openInter(d[m] + 1, d[n])]
/\ f ′ = f [n := m]

N 1(n) == Exists m in Nbrs(n) : N 2(n, m) [* n1(n) *]

N == Exists n in Node : N 1(n) [* n *]

Statefunctions
v == (d * f)

Formulas
Pi == Init /\ [][N] v /\ WF(v , N)

Fig. 3. The spanning-tree algorithm, in the translator’s input language.

and Enabled N . Definitions for the primed and barred expressions are generated
automatically by the translator. Definitions for the Enabled predicates must now
be provided by the user; future versions of the translator will generate them as
well.

4.2 Proofs

The invariant TC of our spanning-tree algorithm is specified in the translator’s
language as

TC == d in [Node -> NatInf] /\ f in [Node -> Node]

where NatInf denotes Nat∪{∞}. The hand proof of invariance of TC was based
on certain tacit assumptions about Root , Node, and Nbrs . The formal statement
of these assumptions is the assertion Assump, defined in the translator input to
be the conjunction of the following two assertions. (Since the set construct has a
bound variable, it requires the same kind of auxiliary function used for quantifiers
and “lambda”.)

Assump1 == Root in Node
Assump2 == Forall n in Node :

Nbrs(n) = {m in Node :
NbrRel(n, m) [* a22(n) *]} [* a21 *]

where NbrRel denotes the neighbor relation on the graph. Further assumptions
about NbrRel are needed for the complete correctness proof of the algorithm.

9

Figure 4 contains the translator version of the invariance proof of Figure 2.
It has the same structure as the hand proof in Figure 2. Steps are numbered in
the more compact fashion 〈level 〉step, with Step〈2〉3 denoting the third substep
of level two and Hyp〈1〉.2 denoting the second hypothesis of level one of the
current proof.
The proof is written in a natural deduction style, the translator input As-

sume A Prove B denoting that A ⇒ B is to be proved by assuming A and
proving B. The goal B can be omitted if it is the same as the current goal. (In
the temporal encoding, assuming A and proving B means assuming σ |= A and
proving σ |= B, for an arbitrary constant σ.) The construct Reduce by A To B
expresses an argument of the form “By A it suffices to prove B.” It is converted
into LP’s style of direct reasoning by rearranging the proof steps. Normalize,
Apply, and Crit are LP commands. The applied rules, such as BoxElim1, are
defined in LP for reasoning about the translator output. In step 〈1〉3, INV1
applies the INV1-rule and Crit’s the current hypotheses with the resulting fact.
Figure 5 shows the LP input in the action-reasoning file generated from step

〈3〉1 in the proof of step 〈1〉2. Additional translator constructs allow arbitrary
LP input to be inserted into the output, making the full power of LP available
through the translator. (Soundness is maintained if no LP assert commands
are inserted.) Such direct use of LP was not needed in this proof; our ultimate
goal is to make it unnecessary in general.
The predicate TC is just one part of the entire invariant Inv . About three

more pages of translator input completes the proof of invariance of Inv . The
rest of the correctness proof takes about six more pages. These proofs required
additional properties of numbers (elements of NatInf), functions, and the dis-
tance function Dist—including the well-foundedness of the ordering on [Node →
Nat ∪ {∞}] defined by f ≤ g iff f [n] ≤ g[n] for all n ∈ Node. Properties of the
natural numbers (associativity of addition etc.) were expressed directly in LP.
Properties of the distance function needed for the proof were asserted in the
translator input. Although these properties can be proved from more primitive
definitions, we have ignored such conventional verification in order to concentrate
on the novel aspects of TLA.

5 Future Directions

It is obviously easier to write a TLA proof in TLA than in an LP encoding of
TLA. It was not obvious to us how much easier it would be. Our initial experience
indicates that writing a proof with the translator can be an order of magnitude
faster than doing the proof directly in LP. Such a speed-up is possible only if the
proof can be written in the translator with no direct use of LP. We are planning
to enhance the translator to eliminate all direct LP reasoning.
Translating the steps of a proof rather than just the property to be proved

permits the use of multiple verification methods. The translator now generates
separate LP input for action and temporal reasoning. We plan to generate input
to other verification systems as well. Steps that are provable by simple temporal

10

Theorem TC
Assume []Assump Prove Pi => []TC

Proof
〈1〉1 Assume Assump, Init Prove TC

〈2〉1 d in [Node -> NatInf]
Reduce by Normalize Hyp〈1〉.2 with Init ,

Apply ProveFuncSpaceLambda to Red
To Assume n in Node Prove d[n]in NatInf

〈3〉1 Case n = Root
Qed by Normalize Hyp〈1〉.2 with Init

〈3〉2 Case n ~= Root
Qed by Normalize Hyp〈1〉.2 with Init

Qed by Cases

〈2〉2 f in [Node -> Node]
Qed by Normalize Hyp〈1〉.2 with Init

Qed by Normalize Goal with TC

〈1〉2 Assume Assump, TC , [N] v Prove TC ′

〈2〉1 Case N
Reduce by Normalize Hyp with N
To Assume n in Node /\ N 1(n)
Reduce by Normalize Hyp with N 1
To Assume m in Nbrs(n) /\ N 2(n, m)

〈3〉1 d ′ in [Node -> NatInf]

〈4〉1 Assume k in openInter(d[m] + 1, d[n]) Prove k in NatInf
Qed by Normalize Hyp with UseOpenInterval

Qed by Normalize Hyp〈1〉.2 with TC ,
Normalize Hyp〈2〉 with N 2,
Apply ProveFuncSpaceUpdateIn to Hyp〈1〉.2 Hyp〈2〉 Step〈4〉1

〈3〉2 f ′ in [Node -> Node]

〈4〉1 m in Node
Qed by Normalize Hyp〈1〉.1 with Assump Assump2

Qed by Normalize Hyp〈1〉.2 with TC ,
Normalize Hyp〈2〉 with N 2,
Apply ProveFuncSpaceUpdateEq to Hyp〈1〉.2 Hyp〈2〉 Step〈4〉1

Qed by Normalize Goal with TC

〈2〉2 Case Unchanged(v)
Qed by Normalize Hyp with v ,

Normalize Hyp〈1〉.2 with TC ,
Normalize Goal with TC

Qed by Cases

〈1〉3 Assume []Assump, TC , [][N] v Prove []TC
Qed by INV1 on Step〈1〉2

Qed by Normalize Hyp with Pi,
Apply BoxElim1 to Hyp,
Crit Hyp with Step1 Step3

Fig. 4. Proof of invariance of TC , in the translator’s input language.

11

set name Theorem_Tc1_2_1_1

prove in(d’, funcSpace(Node, NatInf))

set name Theorem_TC_2_1_1_1

prove (in(v_k_, openInter(((d@v_m_c)+1), (d@v_n_c))) => in(v_k_,NatInf))

resume by =>

<> 1 subgoal for proof of =>

normalize Theorem_TC_2_1_1_1ImpliesHyp with UseOpenInterval

[] => subgoal

[] conjecture

set name Theorem_TC_2_1_1

normalize Theorem_TC_2ImpliesHyp.2 with TC

normalize Theorem_TC_2_1ImpliesHyp with N12

apply ProveFuncSpaceUpdateIn to Theorem_TC_2ImpliesHyp.2 Theorem...

[] conjecture

Fig. 5. Translator output for step 〈3〉1 in the proof of step 〈1〉2 of Figure 4.

reasoning will be verified automatically by a decision procedure for propositional
temporal logic. Some steps might be proved with a model checker by enumerating
all possibilities. We may also investigate the use of theorem provers other than
LP as “back ends” for the translator.

12

References

1. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover. In
N. Dershowitz, editor, Proceedings of the Third International Conference on Rewrit-
ing Techniques and Applications, volume 355 of Lecture Notes on Computer Science,
pages 137–151. Springer-Verlag, April 1989.

2. Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Techni-
cal Report 82, Digital Equipment Corporation Systems Research Center, December
1991.

3. Robert Harper, David MacQueen, and Christopher Wadsworth. Standard ML. In-
ternal Report ECS–LFCS–86–2, Edingburgh University, March 1986.

4. Leslie Lamport. ‘Sometime’ is sometimes ‘not never’: A tutorial on the temporal
logic of programs. In Proceedings of the Seventh Annual Symposium on Principles of
Programming Languages, pages 174–185. ACM SIGACT-SIGPLAN, January 1980.

5. Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Infor-
mation Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668,
Paris, September 1983. IFIP, North-Holland.

6. Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital Equip-
ment Corporation, Systems Research Center, December 1991.

7. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, November
1977.

